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ABSTRACT

An asymptotic expansion obtained previously is employed to

explore the limits of validity of plane wave and line source assumptions

for the incident wave, in the problem of scattering of waves by an infinite

cylinder. Detailed numerical calculations are made in the cases where

the incident wave is a plane wave, line source radiation, and slotted

cylinder radiation. Curves are presented showing the variation of the

amplitude of the scattered wave with respect to spacing of the source

and scatterer. The effect of the directivity of a source is discussed.)\
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Introduction

When radiation from a cylindrical source is incident on a cylindrical

scatterer, the wave incident upon the scatterer and, consequently, the

scattered wave will depend on the distance between the source a d the

scatterer. If, for example, the spacing is infinite, the incident wave

will be a plane wave. If the spacing is large, but not infinite, the incident

wave is equivalent to an isotropic cylindrical wave emanating from a line

source or an equivalent isotropic source. As the source is brought closer

to the scatterer, the directivity pattern of the source becomes more important

and any anisotropies of the source must be taken into account.

The uncertainties in results based on a plane wave assumption are

discussed in the field of microwaves by Kodis 111, Wiles and Mc Lay[ 2]

[ 3] ~~[ 4][5][6Jordan and Mc Lay 3], Subbaro and Mc Lay [5] and King and Wu[ 6]

The possibility of uncertainties in acoustics is discussed by Tamarkin [ 7]

and by Lindsay [ 8]. Analytical and numerical work has been carried out by

Sponsored by the Mathematics Research Center, U. S. Army, Madison, Wisconsin,
under Contract No. DA-l l-0ZZ-ORD- 2059.



#365

Faran[9], Froese and Wait[1 , and Shenderov[11] in the problem of line source

radiation by a circular cylinder, in attempts to test the validity of the plane

wave approximation. In this paper, the line source case is treated in greater

detail and the case of anisotropy of the incident waves is also treated, with

slotted cylinder radiation taken as an example. Consequently, some idea of

the range of validity of the isotropy approximation for the incident wave is

obtained.

The intuitive considerations discussed above have been made more precise

by an expansion th eorem of Karp and Zitron[. This theorem permits the

representation of the field in a neighborhood disjoint from the circular cylinder

circumscribed about the source region. The representation is in the form of

an asymptotic series of inverse half-integral powers of kd, for large kd,

where k is the propagation constant and d is the spacing. The coefficients

in this series are linear combinations of products of derivatives of plane waves

with respect to angle of incidence and derivatives of the complex scattering

amplitude of the far field with respect to angle of incidence. Since the response

of a scatterer to the derivative of a plane wave is the derivative of the response

to a plane wave, this expansion theorem can be employed to obtain successive

orders of approximation of the scattered field in terms of the spacing. The

procedure is discussed elsewhere by Zitron and Karp[3 in greater detail. The

principal purpose of this paper is to carry out numerical computations of these

terms in order to obtain some idea of the ranges of validity of the plane wave
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and line source approximations. The quantities to be computed are the

amplitudes of the far fields scattered by conducting circular cylinders for

various angles of observation in the cases where the incident radiation is a

plane wave, line source or isotropic radiation, and slotted cylinder radiation

as a function of the spacing between the source and the scatterer.

An Analysis of the Problem

Consider a source or collection of sources of infinite length contained in

a bounded cylindrical region. (See figure 1).

A %

Figure 1

Consider a cylindrical neighborhood B at some distance "d" from A where

"d" is the distance between the axis of the circular cylinder circumscribed

about A and the axis of B . Let u(r, 0) be a solution of the reduced wave

equation

(1 z kz
(1) V u+k u=O

with time dependence eiWt . If f(0) is the complex far field amplitude of

the sources in A, the field u(r, 0) radiated by these sources has the

following integral representation[l4].
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(2) u(r, e) : f f(P) eikrcos(e'p) dP
c1

where C1 is the Sommerfeld contour for the Hankel function (kr) The

following asymptotic expansion of u in the neighborhood B has been obtained

by Karp and Zitron

(2t)

(3) U(dO •)eikdL • Lt+±I
t=o(zt)I (kd)t+a

(2t) 2 -p (PtcQ ( [q-j] [J]
(4) where h(O) a L I ,(pc O)P(-t-P)(p(O))(p f(O) v(O)

p=O q=O J=O

and C q
j JI(q-j)|

(1) i •k(xcosP+ysinP) Ps -ds

where x and y are defined in Figure 1, and where P is defined by

cosP(s) =l+is2 where P(O) =0, and Ps(0) =+72 e 4Te

The following differentiation symbols are used:

(p)m- d and IImd
dsp dpJ

The following explicit form of (s(OP)(P) obtained elsewhere E13] is included

for convenience. For p even, (Ps(O))(P) -(Ps)( 2w) = 2v+f a'i(v+ !i%22v)

For p odd, (P (O))(P) = 0 .
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If u is represented asymptotically as

A
(5) u 1

3  u where u n*-
n=O (kdn

the first few terms of (5) are

,,r- i(kd" -

(6) u"o ( fkd) f0) v (0)

(7) u11 = f 0) v(O) + 4 f 1() v(0

2(kd) 
j=O

(8) u= [4 kdt [4 [ 4y-il z f(O) (O)+4 f(O)v(O)]

32(kd) ' J=O

() ei(kd")[ 7 [6-J] [4-J] [j] 2 [2-i] Dj]

48(kd) + 4 16

6225 f 0 ]O
+ "Wf(0) v(0)]

where the subscript i denotes the incident field.

After obtaining the expansion of the radiated field in the neighborhood B,

the next problem is to find the response of a circular cylinder to this incident field.

The problem may be stated as follows:

Let u = u + us where u, is the incident field, us is the scattered field,

and u is the total field. All fields satisfy the wave equation (1) and u

satisfies the Sommerfeld radiation condition
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(10) limra-iku) = 0

The boundary conditions considered here are the Dirichiet condition, u = 0

on the cylinder boundary and the Neumann condition, "-% = 0 on the boundary.Sn

The Dirichlet condition corresponds to the electric field parallel to the

cylinder axis in the electromagnetic case or a "soft" scatterer in the acoustic

case. The Neumann condition corresponds to the magnetic field parallel to the

cylinder axis in the electromagnetic case and a "hard" scatterer in the acoustic

case,

The terms uin of the incident field are in the form of linear combinations of

derivatives of plane waves with respect to angle. The response to the derivative

of a plane wave will be the derivative of the response to a plane wave and,

therefore, the response to each term uin of this incident field will be the same

linear combination of derivatives of the response to a plane wave.

The response to a plane wave has the form

Go

(11) U = Z a 41) (kr) cosn(e-0)s n=_wn n

where the a are determined by the boundary conditions.n

The far field may be represented in the form

(12) us ~ H(kr) f (, P)

where H(kr) n 2 e4/rkr e



#365 -7-

and the complex scattering amplitude of the far field is given by

i-n(13) fs (S, 1) =, an cos n(0-P)
n=--4o

where e is the angle at which the scattered field is observed and P is the

angle of incidence. If f,(P) denotes the complex far field amplitude of the

incident radiation, the scattered fields corresponding to the incident fields

(6 - 9) may be written in the form

(14) u5  ~H r e(kd)
s U0 Hs , 0)(,kd)•

(15) U5 1  H(kr) Z C0 f(0) f,(0, 0) + -f2(0) f (e, 0)
2 (kd)° I =0 oJ

(16) u52  H(kr) r e 4 [4 C) f[4-J] f [j] (s 2 LJ Lj (0,0)+
32 (kd)a If Jo 1=0

I fi(•) f, 9e 0)]

4s (kd) -"J=
(17) u 3 = H(Icr) N 2re C6 [6-J] [] 0 35 4C4 [4-] [i]

25 9 C 2 f(2 , [ o] 225 - f]
C~fi(O) f (e,0) +--f()f e16 Z1=0)+ -f( s(;0
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A measure of caution should be observed in attempting to apply these results.

The first correction term usl given by (15) is of order (kd)t, but the

rescattering of the term Us 0 by the source contributes a term of order (kd)"' .

In an experimental situation, this term, which depends upon the structure of

the source, would have to be considered unless the rescattering effect of the

source is small or the source is shielded against radiation from the scatterer.

See reference [13] for details.
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Method of Computation

In the numerical calculation it was convenient to use the relation

(18) u se, r) =(J-7 ) ei(r " 1 F(0)

to normalize the far field amplitude F(G) . A general program was written for

the Control Data Corporation 1604, in which the modulus of F(e) was calculated

for various values of ka, kd, 6 and Pi)(0 ), using formulas (14-17) . The

incident wave was normalized in such a way that a standard field was produced

at the position of the center of the scatterer in the absence of the scatterer.

From formulas (6-9) above, the following expansion was obtained for ui0 j x=0
y=O

the field at this position:

8(kdl) i F f 2o)(19) ul X=0' e' 0 1 -- +
io =O 17dd 1 4 f£ (0)

1 I f[ (0) f[]( 0) 16
+- _ _ r1 (0 I5+5

48 (kd)3 f 1(O) 2 f (0) 16 fi(o) + A16

+ 0 05~0 *(2

f(I) is normalized so that ui0 V8 = 1 ; in other words the ratio

was used instead of f( . The introduction of this normalization and consequent
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simplification gave the following formula for F(O) :

N

(20) F(e) = N , where

[2-J]

N#%J ff (0 0)-L[Q 2 1 0 [j] 0)+ . (1
~s 2kd Z C f(0 fjf(-

(4-J] (z-i]
41 4 ý(0) [J] 2 2f•(0) [j]

8 ( k d ) [ = 0 J fi ( 0) 2 =f( e , 0 o) ÷ - fs(O ) f e), 0)÷C16 f s( e , o )

[6-J] [4-J]
fi(:O) [J] 35 4 ifo [j]

+ z0)+ C
48(kd) 3LJ=0 1iO f(O =- fs1e0 (0

[2-j]
+ A 2 C2  ...) f (0 of . + .25 oo)] and

16 jo f f(°) s6 s"0 n

D 4 tk d ,.• l j O l l X 0=f f1(0)) s =

It was assumed in all of these calculations that the scatterer was a circular

cylinder of radius a, satisfying either Dirichlet or Neumann boundary conditions

on its surface. In these cases, the coefficients a in formula (11) are easilyn

derived: J (ka)

"an m m for the Dirichlet condition, or
H~l)kka)m

a Im m(ka)
"a n -im ) for the Neumann condition,

n ~ H(ka)
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where 7 and Hm1) are Bessel and Henkel functions respectively. Tables [15]
Im m

are available of Bessel and Henkel functions expressed in terms of a magnitude

C and a phase 6n . The relevant properties are these:

j n(ka) = Cn (ka) sin 6n (ka)

4nl}(ka) - -iCn(ka} e i6n(ka}n n n

These relations and some further simplifications give the following formula for

the Dirichlet boundary condition:

(21) f (S, 0) = i a n sin 6n e-16n cosn( -(), where
n=0

i =min(2, n+l) .n

Similarly, for the Neumann condition, there exists a set of 6 (ka) 's, which

give:

f (0, =i E a sin 6' e" cosn(0-P)n=O n n

In calculating N and D, at least two terms, and not more than four terms

of their respective expansions, were used. Terms were calculated in ascending

powers of 1 , stopping after a term, if this term was smaller in magnitude than
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a certain percentage (usually between 1% and O1/6 of the total sum. For N at

each angle and for D, a record is printed indicating whether or not this

convergence criterion had been met, and if it had been met, how many terms

were needed.

In the above, N and D were calculated separately, and then N was

divided by D . An alternative method, tried for sources for which f(P) is

even, consisted of dividing N by D analytically, retaining terms up to order

1 . For f(P) even, the following holds:
(kd) 

3

(22) F(O) f (0 s

[2]
(4] (2] f (0)

""8fkd}2 s (, 0) + 2fs (0,0) + 4fs(0,0) ]
(2]r [6] [4] [2] (4] [4] f (O)

+ ~~f (000) + Sf (Op0) +INf(02 0) f(0)+ 12fB of(O)U
48(kd)3 [ I e o, ÷ f (0 )

[2] P]
[1 f (0) f t(0)+27f f(OP ) 1

6( ,0 f1 (O) ? i O

The results calculated in this manner agreed well with the results of the previous
(2n)

method; moreover, in the case of derivatives f1(0) of large magnitude the last

method converges faster.

Three different types of sources were considered: a plane wave, a line

source (f(P) = 1), and a slotted cylinder. This latter source was reported on
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Source Scatterer

Asymmetric Slotted Source

Scatterer

Symmetric Slotted Source

Figure 2
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by Papas and King [16], and consists of a circular cylinder of radius c, with

a tangential electric field E,(G) prescribed on its surface, where

EOe) = Eo for 1e - yI < T (the "slot")

and EG(G) O for I0-YI>- -

The letter y stands for the orientation of the slot, and a stands for the

angular width of the slot (see figure 2). In this problem, the z-component of

the magnetic field satisfies the scalar wave equation with Neumann boundary
[n]

conditions. Values of fi(O) were computed from the formula for the far field
adKn[16]

given by Papas and King Values of 00 and 90* were used for y, while

a was set at . 001 radius.

Checks were made at ka = 1. and 3.4 for the line source, using vector

summation rules developed by Lowan, Morse, Feshbach, and Lax[15] and

Faran[9]. This approach results in a convergent series for F(e), in ascending

powers of ka .

A Discussion of the Results

The complex scattering amplitude of the far field was calculated for all

integral values of kd from 1 to 10 and also ka = 3.4, where "a" is the

radius of the scatterer, and for values d= 2, 3, 5, 10, 30, 50, 100, and ao for

the line source and the slotted cylinder. The case rersntdln
a

wave incidence. Both the Dirichlet and the Neumann conditions were applied in
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the line source calculations. Curves and tables for ka = 1, 3.4, and 10 are

included.

The first case considered is that of the line source (Tables 1 - 4 and

Figures 3 - 7) and its limiting case, the plane wave. In this case, the rate

of convergence of the expansion in half-integral powers of kd is good in the

sense that for the Neumann condition only four terms of the asymptotic expansion

were needed to maintain a deviation of less than Z27 from the more exact formula

of Lowan, Morse, Feshbach, and Lax[15] for d > Za in the cases ka = 1 and

ka = 3.4 and for d > Ba in the case ka = 10 . Table 5 shows the minimum

values of S! for which one, two, or three terms are sufficient to meet specifieda

cutoff criteria. The cutoff criteria employed are termination of calculation of

the series when the addition of the last term calculated changed the result by

less than 10%. The curve obtained here for kd = 6.8 differs from that of

Faran[9]. A computational check of the analytical expression from which Faran's

curves were obtained seems to indicate a numerical error in his curve.

The next case considered was the slotted cylinder source (see figures 8, 9)

with plane symmetry, such that kc = 8 and with an aperture of . 001 radians .

An examination of formulas (20) and (22) reveals the effect of the shape or

directivity terms, i.e. the terms that depend upon derivatives of fi(A) . The
I

directivity effect is of second order in kd . The first order term in the far

field is cancelled by another first order term in the normalization. Thus, a

symmetrically oriented source may be approximated by a line source for large

kd . The approximation for this slotted source is good to 1% for ii > 8a
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The rate of convergence of the series was much slower for the slotted source

than for the line source at the same distance, since the derivatives of fi(P)

(Table 6) are somewhat large. For small kd, moreover, the series failed to

converge at all in some cases. Thus, for such small kd, the addition of

further terms in the series would not improve the accuracy for the slotted

cylinder as it would for the line source. Furthermore, since the difference

between the scattered fields of the line source and the slotted cylinder is of
1

second order in 1 .,values of kd small enough to produce a large directivity

effect were also small enough to cause convergence difficulties. A set of

minimum values of ka for specified accuracy is contained in Table 5.

A more extreme directivity effect was obtained by rotating the source 90.

The amplitude of the derivatives of fi(P) was thus increased and the rate of

convergence decreased. Another directivity effect (Figures 10, 11) was a

rotation of the scattering pattern by an angle of 2 radians for small c/d
d

The magnitude of the directivity effect for the rotated slotted cylinder can be
appreciable for large d/a . For example, if ka = I and 100, the

a

difference between the scattered field of a line source and a rotated slotted

cylinder can be as high as 8% at some angles and as high as 25% for ka = 3.4

and =20
a

These results shed some light upon the reasons for the relative success of the

aforementioned experimenters[1 -5], [7] in obtaining agreement between their

results and the theory. Their sources were sufficiently far away for the values
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of wave length and cylinder radii employed. The symmetric nature of the

source reduced the directivity effects considerably and made a line source

approximation reasonable.

Concluding Remarks

In conclusion, the results may be summarized as follows:

1. In the case of a symmetrical source oriented symmetrically with respect to

the scatterer, the line source approximation is often good for relatively small

spacing between source and scatterer.

2. In the asymmetric case, the directivity is a much more important factor then

in the symmetric case.

3. The success of various experimenters in obtaining agreement with experiment

has been due in part to their use of symmetric sources and also to the relatively

large spacing between sources and scatterers.

4. The asymptotic expansion upon which these calculations are based exhibits

convergence difficulties if d is sufficiently small.
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TABLE VI

SLOTTED SOURCE DERIVATIVES f[n]

For kc= 8.0, a=.001

:00 = 90"

n [n] [n] [n] [n]

R (fi(O)) Imj(fi(O' ) Re(fi(Ol) I m(f i(O))

0 1.000 0.000 1.000 0. 000

1 0.000 0.000 - .653 8.600

2 - .223 7.958 -70.920 -11.293

3 0.000 0.000 118.52 -629.29

4 -176.142 -14.930 5420.0 1182.0

5 0.000 0.000 -11021. 51323.

6 295.78 -7546.5 -476006ý -97416.
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Far Field Amplitude
Line Source at Various Distances D

Scattered from Cylinder ka = 1.
Neumann Boundary Condition

Figure 3
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KD=52

Far Field Amplitude
Line Source at Various Distances D

Target is Cylinder ka = 1.
Dirichlet Boundary Conditions

Figure 4
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•oSS

Line Source With Cylindrical Target ke = 3.4

Far Field Amplitude, Neumann Boundary Gondition

Figure 5
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Line Source With Cylindrical Target ka = 3.4
Far Field Plotted

Dirichlet Boundary Condition

Figure 6
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,-'~LINE A SLOTTED
t !! PLANE ,

Far Field Amplitude ka 10. kd = 100.
Neumann Conditions

Figure 7
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Far Field Amplitude
Sources:

Planu Wave
Line Source kd= 10.
Symmetric Slotted Cylinder kd = 10.

Target: Cylinder ka = 1. Neumann Boundary Conditions
Figure 8
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SLOTT
LINE

'K E + SLOTTED

Far Field Amplitude ka : 3. 4
Line Source kd : 17

Slotted Source kc = 2. 00 .05r kd =17

Figure 9
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PLANE

Far Field Amplitude
Rotated Slotted Source kc = 8. Width .001r.
Scatterer is Cylinder ka = 1. 0 at Distance
kd = 100. is Far Field of Plane Wave.

Neumann Boundary Condition
Figure 10



-32- #365

Source: Slotted, With kc = 8. 0, Distance kd 68. 0, Orientation

Scatterer: Cylinder, With ka = 3. 4, Neumann Boundary Conditions

Figure 11
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